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Abstract - We develop a perturbation theory for ferrite- 
loaded waveguides. The perturbation operator is chosen as 
the deviation of the relative permeability matrtx from unity. 
The method allows a systematic calculation of the propagation 
constant as well as the perturbed modes to any desired order. 
It can be used for any direction of the bias field and also for 
inhomogeneous bias fields as long as the translation invariance 
along the waveguide is kept. We apply our methad to ferrite- 
loaded waveguides with bias field in propagation direction. 
For the completely filled case first order expressions for the 
propagation constant are obtained and the coupling behatiour 
of TE, TM and TEM modes is discussed. Furthermore we study 
the scattering of TEM modes in partially filled waveguides and 
obtain the S-matrix for the ferrite coupled line in tint order. 

I. INTRODUCTlON 

Nonreciprocal devices using ferrite materials are becoming 
mme and nxxe important. E.g. the linearity of transceivers 
can be substantially improved by using isolators to suppress 
unwanted reflections. Modern access modes like W-CDMA 
or EDGE pose very high linearity requirements on the used 
tranceivers, even for the mobile handsets. 

The nonreciprocal effect in ferrite devices results from the 
interaction between the microwave and the magnetized ferrite. 
It can be described by introducing a permeability matrix as 
long as the power level does not become too high [I]. Since 
first nonreciprocal microwave compcments were introduced 
already in the 1950’s, there is an extensive literature on the 
subject [2], [3]. Generally one can distinguish between devices 
which operate at a frequency far away from the ferromagnetic 
resonance and devices which work in resonance. The latter 
usually make use of the high losses which occur close to 
the resonance. The resonance isolator provides a common 
example. For devices which work far away from resonance like 
e.g. a Y-junction circulator, the relative permeability matrix is 
close to unity. It is therefore reasonable to treat the deviation 
of the relative permeability tensor from unity as a perturbation 
and apply perturbation theory to obtain an approximation for 
the modes of the ferrite loaded structure. 

In this work, we apply perturbation theory to the modes 
of an infinitely long waveguide with fixed cross section. A 
similar approach is already discussed in [2]. However, here 
only a first order approximation of the propagation constant is 
given. The change of the modes itself due to the perturbation 
is not considered. A coupled mode theory approach has been 
given by Marcuse [4] and extended to ferrite filled waveguides 
by Awai and ltoh [S]. Here the special case of tw coupled 

waveguides is considered, i.e. only two modes are taken into 
account. 

In the following we develop a perturbation approach for 
ferrite loaded waveguides which leads to a systematic expan- 
sion of the ferrite-loaded waveguide modes in temn of the 
unloaded modes. In can be applied if the relative permeability 
matrix is close to unity. A spatial variation of the permeability 
matrix within the waveguide cross section is allowed as long m!A!l 
as translation mvariance along the waveguide is kept. We I*1: 
apply this method to the case of ferrite-loaded waveguides 
with longitudinal bias field. This configuration might be well 
suited for monolithic integration of nonreciprocal devices 
since there are less demagnetisation effects as compared to 
planar structures with perpendicular bias field (e.g. Y-junction 
circulator). In case of completely filled waveguides, we obtain 
the first order change in the propagation constant and give a 
classification of the different coupling behaviour of TE, TM 
and TEM modes. Two numerical examples are discussed to 
compare our method with exact results. Furthemmre we study 
the scattering of TEM modes in partially filled waveguides and 
obtain the first order expression for the S-matrix. This method 
is applied to the ferrite coupled line [6] and compared with 
simulation results. 

II. PERTURBATION THEORY 

In the following we assume a time dependence eJwt for all 
fields. The wave equation for the electric field within a ferrite- 
loaded waveguide reads 

rot/yrotE = k&q (1) 

where k,2 = w2tor,fi0 and divg = 0. If the ferrite is biased 
in z-direction, the permeability tensor is given by 

PF = I+ ,zw-“,2 
0 

(+ ; i), (2) 

where (u‘m = ypoM and wg = ypoHo. Here M denotes the 
magnetisation and Ho the internal magneiic bias field within 
the ferrite. Clearly p? becomes close to I, if the frequency is 
far from resonance, i.e. w < wg or w > wo+w,. We can then 
treat tbe effect of the ferrite loading as a perturbation of the 
unloaded waveguide. This holds for arbitrary direction of the 
bias field as well as for inhomogeneous bias fields. The modes 
of the ferrite-loaded waveguide can then be expanded using 
the modes of the unloaded waveguide. Far from resonance, 
the change of the modes up to first order in the perturbation 
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is already a good approximation. Many nonreciprocal devices 
using ferries operate far from resonance in order to keep the 
losses small. In those situations, the perturbation method to be 
described in the following can be savely applied. 

In a first step we split the wave equation operator into two 

Parts 
rotp;%ot = l?o + <B,, (3) 

where 
B, = rOtrOt (4) 

denotes the wave equation operator for the unperturbed modes 
and 

cl+, = rot@;’ 1)rot (5) 

denotes the perturbation operator. We assume that the eigen- 
vectors and eigenvalues of & are known. The propagation 
constants of the unperturbed modes result from the require- 
ment, that the eigenvalues are equal-to kz,The eigenvectors 
and eigenvalues of the full operator Ho +<H, can then be ex- 
panded as a series in the small parameter <. Au approximation 
of the propagation constant to any desired order is given by 
setting the obtained approximation of the eigenvalue up to this 
order equal to ki. This type of perturbation method is widely 
used in other physical contexts (see e.g. [7]). 

In the following we assume that the waveguide has metal 
walls and extends in z-direction. The cross section of the 
waveguide as well as the permeability tepsor are assumed to be 
independent of z. The eigenvectors of Ho can then be labeled 
as gg, where k is a discrete index due to the boundary 
condition for the electric field and p refers to the propagation 
constant. Due to the translation invariance in z-direction, @ is 
continuous. The eigenvalue equations then read 

fi@j = (A: + a*,@. (6) 

Similarly we denote the eigenvectors of fiO + <fit by &fip 
and write 

(6 + E&)&a = (A; + P2 f&a)&?. (7) 

The E@ form a complete orthogonal set and can be classified 
as TE, TM and TEM modes [Xl, [9]. TEM modes correspond 
to Xk = 0. We normalize the basis of eigenvectors as 

J 
d% Eg;E$; = sqp, - /!32)6& (8) 

” 

where V denotes the volume of the waveguide. Insetting the 
expansions 

A 
Ekp = L$ + EEk. -‘(I) + pEg + (9) 

&p = <bg + && + (10) 

into (7) and comparing order by order in E, we find 

i&E”; = (AZ, + p*)Eg (11) 

fr&$ + a&g = (A: + p*)Eg + 6$pd (12) 

We normalize the eigenvectors of fin + <fit as 

J 
d3r i?g;&, = 274Pl - P2)6kl. (13) 

” 

Then the higher order contributions $2, !$, do not have 

a mode contribution of $2. In the following the solution of 
the first order equation (12) is discussed. 

A. First Order Solution - Non-degenerate Case 

We assume that the eigenvector Ekp -@’ is not degenerate. In 

addition we assume the fit does not depend on z. In order to 
obtain a solution of (IZ), we expand 

Q = c ai Z$:bo (14) 
[#k 

and project on the state @. This leads to 

6(‘) - 
J 

‘Kw ^ -m 
kP - dxdy Eks fLQg (1% 

F 

al = AZ, - q l J 
dzdy I?$)+“““&~~. (16) 

F 

Here F denotes the cross section of the waveguide. Note 
that the sum in (14) does not contain a term k = 1 due to 
the chosen normalisation in (13). The expansion in (14) can 
not be applied, if the eigenvector g$ is degenrate, since the 
corresponding expansion coefficients in (16) would not be well 
defined. 

B. First Order Solurion - Degenerate Case 

If Xk is r-fold degenerate, we start the perturbation expan- 
sion from appro riate linear combinations of the degenerate 

-4 ~ eigenvectors Ek,p, z - 1,. , r. Let 

kfcj = /a,dy$$%@~ (17) 

F 

and 
j&(P) = &4v’(d, (18) 

The coefficients of the normalized eigenvectors BC9) form the 
required linear combinations 

$p) = r pp~;, q=l,..., T. (19) 



III. COMPLETELY FILLED WAVEGUIDES WIT” 
LONGITUDINAL BIAS FIELD - FIRST ORDER RESULTS 

We apply the perturbation method described in the previous 
section to the case where the waveguide is completely filled 
with ferrite material and biased in z-direction. The coupbng 
behaviour of the modes is encoded in the coupling coefficients 

&y)(t) = J ‘(3H ^ -(t) d& Ekp SHd& > s,t E {te,tm,tem}. (23) 

F 

Taking the special properties of TB, TM and TEM modes [9] 
into account we derive the following first order results 

I. 7he propagation constants of nondegenerate modes are 
given as 

where 
~LtT= (~o+w7z)*-W2 e 

wo(wo+w,)-d’ 
(27) 

2. Degenerate TM and TEM modes remain degenerate and 
the equations above for the propagation constant remain 
valid. In contrast to this, the degeneracy of TE modes is 
lifted. 

3. The degeneracy of TM and TEM modes can be lifted, 
e.g. if the waveguide is not completely filled. 

4. Coupling between modes is mediated only through TE 
modes, i.e. TM and TEM modes acquire only additional 
TE contributions, whereas TE modes acquire additional 
TE, TM and TEM contributions. 

In the following we give two examples which illustrate OUT 
findings. 

A. Coaxial Line 

The ground mode of the coaxial line is a TEM mode. In 
first order perturbation theory, we obtain for the propagation 
constant 0 = Jhe~ko. This coincides with the Suhl and 
Walker approximation [IO]. In Fig. I P/k0 is plotted against 
frequency below resonance. We find good agreement with the 
exact result obtained in [I I] since the second order is strongly 
suppressed due to the large cut-off frequencies of the higher 
modes. 

B. Cylindrical Waveguide 

The unloaded cylindrical waveguide with circular cross 
section has two-fold degenerate TE modes, which can be 
written as 

‘p) ~ 1 
n%ip ~ k,, rot(&,*e-j@), (28) 

where 

Here R denotes the radius of the cross section and JA(lc,,R) = 
0. The propagation constants ax given by fit, = ki - k&. 

Loading this waveguide with ferrite material with bias field in 
propagation direction leads to a splitting of those degenerate 
modes. Appl)?ng degenerate perturbation theory leads to the 
following expression for the propagation constants 

This result is plotted in Fig. 2 for frequencies above resonance 
together with the exact result from [Z]. We find excellent 
agreement. 

IV. SCATTERING OF TEM MODES -FERRITE COUPLED 
LINE 

In the following we consider the scattering problem, where 
the waveguide is only partially filled with ferrite. The ferrite 
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material is assumed to be present only between two interfaces 
located at I = t, and z = ~2, zz - tl = L > 0. Furthermore 
we assume that the ferrite has the same pennittivity as the 
surrounding dielectric. If the structure supports n TEM modes 

gk = p,-3ko* (31) 

& = 1 q+3kOZ (32) 
70 

where BE’ = -a&(~, y) and ip’ = Zz x ip), the ferrite- 
loaded modes can be obtained by applying degenerate first 
order perturbation theory as 

,q =e pp),-380 (33) 
L&1 

n a,r= l cut (k) -(w P 

‘IAT 14 
A, e ’ *=. (34) 

Here we have ignored the coupling to any TE and TM modes 
which is of course only justified, if the working frequency 
is well below the cut-off frequency of these modes. The first 
order result of the magnetic field was obtained bx the require; 
ment, that the modes remain TEM and that rotH = jwrot,E 
holds. This is consistent with the neglection of higher TE and 
TM modes. The propagation constants Pk = ko/Jl +bk, 
characteristic impedances r~k = rlo/Jl+ 6rc and expansion 
coefficienti u/~) are obtained from the eigenvalues 6k and 
eigenvectors Bck) of the coupling matrix 

The reflection/transmission from the unloaded mode 1 to the 
unloaded mode k is then given by 

A. Ferrite Coupled Line 

We apply the method explained above to the half filled 
ferrite coupled stripline [6] which has two degenerate TEM 
modes, even (e) and odd (0). The corresponding waveguide 
cross section is shown in the inset of Fig. 3. The magnitude 
of the obtained transmission S,: = Se: and Se: = -5’,T is 
plotted in Fig. 3 together with simulation data. We find good 
agreement. 

v. CoNCLUsloN 

A perturbation theory for ferrite-loaded waveguides was de- 
veloped. Tbe perturbation operator was chosen as the deviation 
of the relative permeability matrix from unity. The method 
allows a systematic calculation of the propagation constant as 
well as tbe perturbed modes to any desired order. It can be used 
for any direction of the bias field and even for inhomogeneous 

bias fields as long as the translation invariance along the 
waveguide is kept. For the case of the completely filled 
waveguide it was shown that up to first order in perturbation 
theory the mixing between modes is only mediated by TE 
modes. In particular, degeneracy of TM and TEM modes is 
not lifted. However, if the waveguide is not completely filled, 
such a mixing in general occurs. Furttwmore we derived tbe 
S-matrix for the scattering of TEM modes in partially ferrite- 
loaded waveguides. As an example we discussed the half 
filled ferrite coupled line and found good agreement between 
perturbation results and simulation data. 
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