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Abstract We develop a perturbation theory for ferrite-
loaded waveguides, The perturbation operator is chosen as
the deviation of the relative permeability matrix from unity.
The method allows a systematic calculation of the propagation
constant as well as the perturbed modes to any desired order.
It can be used for any direction of the bias field and also for
inhomogeneous bias fields as long as the translation invariance
along the waveguide is kept. We apply our method to ferrite-
loaded waveguides with bias field in propagation direction,
For the completely filled case first order expressions for the
propagation constant are obtained and the coupling behaviour
of TE, TM and TEM modes is discussed. Furthermore we study
the scattering of TEM modes in partially filled waveguides and
obtain the S-matrix for the ferrite coupled line in first order.

I. INTRODUCTION

Nonreciprocal devices using ferrite materials are becoming
more and more important. E.g. the linearity of transceivers
can be substantially improved by using isolators to suppress
unwanted reflections. Modern access modes like W-CDMA
or EDGE pose very high linearity requirements on the used
tranceivers, even for the mobile handsets,

The nonreciprocal effect in ferrite devices results from the
interaction between the microwave and the magnetized ferrite,
It can be described by introducing a permeability matrix as
long as the power level does not become too high [1]. Since
first nonreciprocal microwave components were introduced
already in the 1950’s, there is an extensive literature on the
subject [2], [3]. Generaily one can distinguish between devices
which operate at a frequency far away from the ferromagnetic
resonance and devices which work in resonance. The latter
usually make use of the high losses which occur close to
the resonance. The resonance isolator provides a common
example. For devices which work far away from resonance like
e.g. a Y-junction circulator, the relative permeability matrix is
close to unity. It is therefore reasonable to treat the deviation
of the relative permeability tensor from unity as a perturbation
and apply perturbation theory to obtain an approximation for
the modes of the ferrite loaded structure.

In this work, we apply perturbation theory to the modes
of an infinitely long waveguide with fixed cross section. A
similar approach is already discussed in [2]. However, here
only a first order approximation of the propagation constant is
given. The change of the modes itself due to the perturbation
is not considered. A coupled mode theory approach has been
given by Marcuse [4] and extended to ferrite filled waveguides
by Awai and Itoh [5]. Here the special case of two coupled
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waveguides is considered, i.e. only two modes are taken into
account,

In the following we develop a perturbation approach for
ferrite loaded waveguides which leads to a systematic expan-
sion of the ferrite-loaded waveguide modes in terms of the
unloaded modes. In can be applied if the relative permeability
matrix is close to unity. A spatial variation of the permeability
matrix within the waveguide cross section is allowed as long
as translation invariance along the waveguide is kept. We
apply this method to the case of ferrite-loaded waveguides
with longitudinal bias field. This configuration might be well
suited for monolithic integration of nonreciprocal devices
since there are less demagnetisation effects as compared to
planar structures with perpendicular bias field (e.g. Y-junction
circulator). In case of completely filled waveguides, we obtain
the first order change in the propagation constant and give a
classification of the different coupling behaviour of TE, TM
and TEM modes. Two numerical examples are discussed to
compare our method with exact results. Furthermore we study
the scattering of TEM modes in partially filled waveguides and
obtain the first order expression for the S-matrix. This method
is applied to the ferrite coupled line [6] and compared with
simulation results.

II. PERTURBATION THEORY

In the following we assume a time dependence e/ for all
fields. The wave equation for the electric field within a ferrite-
loaded waveguide reads

(I

where kZ = w?eeppto and divE = 0. If the ferrite is biased
in z-direction, the permeability tensor is given by

ot rotF = k3E,

w wy jw 0
ﬂr‘ =1+ 9 i 9 F.ﬂ"’ & 0 3 (2)
Wo — W 0 0 0

where wy, = yupM and wy = yupoHo. Here M denotes the
magnetisation and Hy the internal magnetic bias field within
the ferrite. Clearly ji» becomes close to 1, if the frequency is
far from resonance, i.e. w < wg Or W > Wo+warn. We can then
treat the effect of the ferrite loading as a perturbation of the
unloaded waveguide. This holds for arbitrary direction of the
bias field as well as for inhomogeneous bias fields. The modes
of the ferrite-loaded waveguide can then be expanded using
the modes of the unloaded waveguide, Far from rescnance,
the change of the modes up to first order in the perturbation
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is already a good approximation. Many nonreciprocal devices
using ferrites operate far from resonance in order to keep the
losses small. In those situations, the perturbation method to be
described in the following can be savely applied.

In a first step we split the wave ecquation operator into two
parts :

rotfi, rot = Hy + ifil, 3

where .
Hy = rotrot ()

denotes the wave equation operator for the unperturbed medes
and B
Hy =rot{fi;t — 1)rot (5)

denotes the perturbation operator. We assume that the eigen-
vectors and eigenvalues of Hy are known. The propagation
constants of the unperturbed modes result from the require-
ment, that the eigenvalues are equal to kg.A The eigenvectors
and eigenvalues of the full operator Hy+£H, can then be ex-
panded as a series in the small parameter £. An approximation
of the propagation constant to any desired order is given by
setting the obtained approximation of the eigenvalue up to this
order equal to k3. This type of perturbation method is widely
used in other physical contexts (see e.g. [7]).

In the following we assume that the waveguide has metal
walls and extends in z-direction, The cross section of the
waveguide as well as the permeability tensor are assumed to be
independent of z. The eigenvectors of Hy can then be labeled
as E‘,E?, where k is a discrete index due to the boundary
condition for the electric field and 3 refers to the propagation
constant. Due to the translation invariance in z-direction, 3 is
continuous. The eigenvalue equations then read

CHES) = 03+ pHEY. (6)

Similarly we denote the eigenvectors of Ho + £Hy by Ekg
and write

(Ho + €M) Erp = (A + 8% + 6kp) Enp. o)

The EEZ%) form a complete orthogonal set and can be classified
as TE, TM and TEM modes [8], {9]. TEM modes correspond
to Ax = 0. We normalize the basis of eigenvectors as

j & EQVES) = 218(61 — B2)ow, ®)
V

where V' denotes the volume of the waveguide. Inserting the

expansions

By = B9 +¢EY + B8 + .. ©

Snp = E0L) + 67000 + .. (10)
into (7) and comparing order by order in £, we find
HoEy) = (02 + B)EY (11

BB + MED = (0 + BOE + o By (12)
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We normalize the eigenvectors of I;’O + EH 1 as

/d37‘ Eé?ltﬁlgz = 27l'6(,81 — /32)5“.
v

(13)

Then the higher order contributions E‘ég, E‘}E?, ... do not have
a mode contribution of E,E? In the following the solution of

the first order equation (12) is discussed.
A. First Order Solution — Non-degenerate Case

We assume that the eigenvector Ed,(fg is not degenerate. In

addition we assume the H; does not depend on 2. In order to
obtain a solution of (12), we expand

R =3"aEY (14)
1k
and project on the state E'z(g]- This leads to
8 = f drdy By Iy (15)
F

1 F(0)F 7y (0

o= 5 fd:ndy BT ES. (16)
kA

Here F' denotes the cross section of the waveguide. Note
that the sum in (14} does not contain a term k = [ due to
the chosen normalisation in (13). The expansion in (14) can
not be applied, if the eigenvector E‘fc% is degenrate, since the
corresponding expansion coefficients in {16) would not be well
defined.

B. First Order Solution — Degenerate Case

If ) is r-fold degenerate, we start the perturbation expan-
sion from appro&)riatc lincar combinations of the degenerate
eigenvectors E,g?ﬁ,i =1,...,m Let

My = f ddy BLy HiFfy an
F
and :
Mz — slaglo, (18)

The coefficients of the normalized eigenvectors # (@) form the
required lincar combinations

.
E‘}g‘g“’) _ ngq)gg)ﬁ, g=1,...,r

(19)
i=1
As in the non-degenerate case, we expand
BOD =30 EY (20)
1#k
and find
5O = / dedy B3 i EY® @1
¥ -
1 it s =
Gw=,5_ / dedy B MEZD®.  (22)
k [ a



I1Y. COMPLETELY FILLED WAVEGUIDES WITH
LONGITUDINAL B1AS FIELD — FIRST ORDER RESULTS
We apply the perturbation method described in the previous

section to the case where the waveguide is completely filled
with ferrite material and biased in z-direction. The coupling
behaviour of the modes is encoded in the coupling coefficients

C,S)(t) :fdxdy E“,(cgféﬁlﬁfé), st € {tejtmtem}. (23)
7

Taking the special properties of TE, TM and TEM modes [9]
into account we derive the following first order resulis

1. The propagation censtants of nondegenerate modes are

given as
ﬁ’(cte)2 _ #eﬂ’("fg _ ’\)(:8)2) (24)
ﬁ‘(cnm)z _ ueﬂkg B As:m)Q 25)
™ = okl (26)
where
2_ 2
et = (wo + wr)® —w @n

T wolwo +wm) —o?
2. Degenerate TM and TEM modes remain degenerate and
the equations above for the propagation constant remain
valid. In contrast to this, the degeneracy of TE modes is
lifted.
3. The degeneracy of TM and TEM modes can be lifted,
e.g. if the waveguide is not completely filled.
4. Coupling between modes is mediated only through TE
modes, i.e. TM and TEM modes acquire only additional
TE contributions, whereas TE modes acquire additional
TE, TM and TEM contributions.
In the foliowing we give two examples which illustrate our
findings.

A. Coaxial Line

The ground mode of the coaxial line is a TEM meode. In
first order perturbation theory, we obtain for the propagation
constant § = /pe ko. This coincides with the Suhl and
Walker approximation [10]. In Fig. 1 3/ko is plotted against
frequency below resonance. We find good agreement with the
exact result obtained in [11] since the second order is strongly
suppressed due to the large cut-off frequencies of the higher
modes.

B. Cylindrical Waveguide

The unloaded cylindrical waveguide with circular cross
section has two-fold degenerate TE modes, which can be
written as

o 1 .
EQLs = Koni rot{$hni+e~15%), (28)
where
2 K Jnlknip) +ing
it = . 29
1/)'“1/:‘:‘ \/Tf \/(kniR)2 - ﬂ2 Jn (kniR)e ( )

Here R denotes the radius of the cross section and J), (k,.; R) =
0. The propagation constants are given by 82, = k2 — k2.
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Fig. 1. The Figure shows §3/kq plotted against frequency below resonance.
The squares correspond to the exact result, the solid line displays our result.
1

Loading this waveguide with ferrite material with bias field in
propagation direction leads to a splitting of those degenerate
modes. Applying degenerate perturbation theory leads to the
following expression for the propagation constants '

2 .’—"eﬁ(k(% - k?”)

nit = Wiy 2n
1+ wo (wotwe )—w? (ko R)2—n2

G0

This result is plotted in Fig. 2 for frequencies above resonance
together with the exact result from [2]. We find excellent
agreement.
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Fig. 2. The diagram shows the propagation constants of the dominant TE
modes. The 2-fold degeneracy of the propagation constant is lifted due to the
ferrite material. The data points correspond to the exact result whereas the
solid and dottet lines show our perturbation result. The frequency range is
well above resonance.

IV. SCATTERING OF TEM MODES — FERRITE CGUPLED
LINE

In the following we consider the scattering problem, where
the waveguide is only partially filled with ferrite. The ferrite



material is assumed to be present only between two interfaces
located at z = z; and 2 = 29, 29 — 21 = L > 0. Furthermore
we assume that the ferrite has the same permittivity as the
surrounding dielectric. If the structure supports n TEM modes

By — A[Pedkos (1)

o=

T

where E,SE) = —Vipp(z,y) and f_l',EH) =&, xfl‘,EE), the ferrite-

loaded modes can be obtained by applying degenerate first
order perturbation theory as

n
£ oW AP it

=1

1 Zn: o8 D=z,
K !

Here we have ignored the coupling to any TE and TM medes
which is of course only justified, if the working frequency
is well below the cut-off frequency of these modes. The first
order result of the magnetic field was obtained by the require-
ment, that the modes remain TEM and that rotH = jWEQErE
holds. This is consistent with the neglection of higher TE and
TM modes. The propagation constants Sr = ko/+/1 + 6k,
characteristic impedances 7, = 7g/ V148 and expansion
coefficients v,(k) are obtained from the eigenvalues &, and
eigenvectors 7 (%) of the coupling matrix

A (H) —jk
A e IR,

(33)

(34)

My = / dedy A - 1)AM. @39)

Frorrite

The reflection/transmission from the unloaded mode ! to the
unloaded mode % is then given by

n o7 (I - ) sin(8, L)

=1 cos{f3, L)+ } (no + ”0) sin(3, L)

n g NIme
U Y

—1cos(B,L) + 3 (2; + Z‘j) sin(3,L)
A. Ferrite Coupled Line

S = (36)

Skt = (37

We apply the method explained above to the half filled
ferrite coupled stripline [6] which has two degenerate TEM
modes, even (e) and odd (o). The corresponding waveguide
cross section is shown in the inset of Fig. 3. The magnitude
of the obtained transmission S,k = ST and ST = —S.T is
plotted in Fig. 3 together with simulation data. We find good
agreement.

V. CONCLUSION

A perturbation theory for ferrite-loaded waveguides was de-
veloped. The perturbation operator was chosen as the deviation
of the relative permeability matrix from unity. The method
allows a systematic calculation of the propagation constant as
well as the perturbed modes to any desired order. It can be used
for any direction of the bias field and even for inhomogeneous

(32)
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Fig. 3. The diagram shows the transmission odd/odd and evenfodd for the
half fi lled ferrite coupled line as a function of frequency. The waveguide cross
section is shown in the inset. Data points correspond to simulation results
whereas the solid and dotted lines display the perturbation result.

bias ficlds as long as the translation invariance along the
waveguide is kept. For the case of the completely filled
waveguide it was shown that up to first order in perturbation
theory the mixing between modes is only mediated by TE
modes. In particular, degeneracy of TM and TEM meodes is
not Jifted. However, if the waveguide is not completely filled,
such a mixing in general occurs. Furthermore we derived the
S-matrix for the scattering of TEM modes in partially ferrite-
loaded wavegnides. As an example we discussed the half
filled ferrite coupled line and found good agreement between
perturbation results and simulation data.
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